Skip to main content

Image List

  • A jet of gas firing out of a very young star can be seen ramming into a wall of material in this infrared image from NASA's Spitzer Space Telescope. The young star, called HH 211-mm, is cloaked in dust and can't be seen. But streaming away from the star are bipolar jets, color-coded blue in this view. The pink blob at the end of the jet to the lower left shows where the jet is hitting a wall of material. The jet is hitting the wall so hard that shock waves are being generated, which causes ice to vaporize off dust grains. The shock waves are also heating material up, producing energetic ultraviolet radiation. The ultraviolet radiation then breaks the water vapor molecules apart. In this image, light with wavelengths of 3.6 and 4.5 microns is blue; 8-micron light is green; and 24-micron light is red.

    A jet of gas firing out of a very young star can be seen ramming into a wall of material in this infrared image from NASA's Spitzer Space Telescope. The young star, called HH 211-mm, is cloaked in dust and can't be seen. But streaming away from the star are bipolar jets, color-coded blue in this view. The pink blob at the end of the jet to the lower left shows where the jet is hitting a wall of material. The jet is hitting the wall so hard that shock waves are being generated, which causes ice to vaporize off dust grains. The shock waves are also heating material up, producing energetic ultraviolet radiation. The ultraviolet radiation then breaks the water vapor molecules apart. In this image, light with wavelengths of 3.6 and 4.5 microns is blue; 8-micron light is green; and 24-micron light is red.

    NASA/JPL-Caltech/Harvard-Smithsonian CfA