The most massive galaxies in the universe (as far as astronomers know) contain about five hundred billion solar-masses of material; our Milky Way galaxy, for comparison, has a total mass of roughly about one hundred billion solar masses. Typically about 80% of the mass in a galaxy is in the form of stars and most of the rest is gas. (In addition, galaxies are inferred to have halos of dark matter of unknown composition containing much more matter, perhaps ten times more.)
Astronomers trying to understand how galaxies of all kinds form are keenly interested in the giants because they appear to exist in the early universe. The cosmos is about thirteen billion years old, and the Milky Way and other galaxies in our neighborhood no doubt benefited from having all that time to grow larger. But some of the most massive galaxies have been found back when the universe was only a few billion years old: how did they get to be so big so fast?
Part of the answer to this question can be found by looking at the production of new stars in a galaxy, as well as the growth of its central massive black hole. Both of these processes can be studied in distant objects because they produce bright radiation in the infrared, with the latter process also producing strong radio and X-ray emission. CfA astronomer Belinda Wilkes and her three colleagues studied these phenomena in three massive galaxies whose light has been traveling towards us for about eleven billion years. They used the Herschel Space Telescope’s infrared sensors, combined with data from the Chandra X-Ray Observatory and ground-based radio results. They find their sources are making stars at a rate of nearly 800 per year, hundreds of times faster than does the Milky Way, and moreover they do so while copiously accreting material onto their nuclear black holes, something that had previously been deemed unlikely. The new paper shows that activity in both the nucleus and star forming regions of a galaxy can occur simultaneously, even in the early universe. The results suggests that although such dramatic combined activity highlights atypical, massive galaxies, physically it may be playing a fundamental role in their growth and development.
Related News
CfA Celebrates 25 Years with the Chandra X-ray Observatory
CfA Astronomers Help Find Most Distant Galaxy Using James Webb Space Telescope
Unexpectedly Massive Black Holes Dominate Small Galaxies in the Distant Universe
Distant Stars Spotted for the First Time in the Vast Magellanic Stream
CfA Scientists Help Reach New Milestone in Quest for Distant Galaxies
Astrophysicists Hunt for Second-Closest Supermassive Black Hole
The Tilt in our Stars: The Shape of the Milky Way's Halo of Stars is Realized
JWST Draws Back Curtain on Universe's Early Galaxies
Dozens of Newly Discovered Gravitational Lenses Could Reveal Ancient Galaxies and the Nature of Dark Matter
A Massive Galaxy Supercluster in the Early Universe
Projects
2MASS Redshift Survey
AstroAI
Dark Energy Spectroscopic Instrument (DESI)
GMACS
For Scientists